Immunopathological Mechanisms of Brain Damage in Cerebral Malaria: A Literature Review on Immunological Pathways and Neuroinflammatory Biomarkers

Main Article Content

Budiyanti Mulyaningsih
Junaidi Junaidi
Muhammad Pahruddin
Zulfikar Ali As

Abstract

Cerebral malaria, a complication of Plasmodium falciparum infection, affects the central nervous system and has the potential to cause brain damage. Reviewing its immunopathological mechanisms is crucial for developing more effective diagnostic and therapeutic strategies. This study aims to investigate the immunopathological mechanisms of brain damage in cerebral malaria by synthesizing recent literature through a narrative literature review approach. A total of 29 articles from the Scopus database were screened, with 23 meeting the inclusion and exclusion criteria. Thematic analysis identified five key sub-themes: (1) immune system activation and endothelial dysfunction; (2) the role of neutrophils and macrophages in neurological pathogenesis; (3) implicated molecular pathways and gene expression; (4) neuropathological findings in experimental models; and (5) clinical implications and therapeutic advancements. The findings indicate that immune overactivation, the release of pro-inflammatory cytokines, and dysregulated gene expression are core mechanisms underlying blood-brain barrier (BBB) disturbances and neural tissue damage. A profound understanding of these mechanisms is essential for designing more effective therapeutic interventions to mitigate the long-term neurological sequelae of cerebral malaria.

Article Details

Section
Articles

References

World malaria report 2023 [Internet]. [cited 2025 Jun 16]. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023

Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models (Adv. Sci. 36/2022). Advanced Science [Internet]. 2022 Dec 29;9(36). Available from: https://onlinelibrary.wiley.com/doi/10.1002/advs.202270228

Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol [Internet]. 2024 Jan 1 [cited 2025 Jun 13];40(1):28–44. Available from: https://www.sciencedirect.com/science/article/pii/S1471492223002854?utm_source=chatgpt.com

Parasher A, Chowdhary R, Bez J. Cerebral malaria: a lethal complication of a common tropical infection. Int J Res Med Sci. 2021 Jun 25;9(7):2167.

Leão L, Puty B, Dolabela MF, Povoa MM, Né YGDS, Eiró LG, et al. Association of cerebral malaria and TNF-α levels: a systematic review. BMC Infect Dis. 2020 Dec 23;20(1):442.

Royo J, Vianou B, Accrombessi M, Kinkpé E, Ayédadjou L, Dossou-Dagba I, et al. Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria. Infect Dis Poverty [Internet]. 2023 Feb;12(1):8. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147792514&origin=inward

Bruneel F. Human cerebral malaria: 2019 mini review. Rev Neurol (Paris) [Internet]. 2019 Sep 1 [cited 2025 Jun 13];175(7–8):445–50. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0035378719306605?utm_source=chatgpt.com

Sema G, Mutiara H, Soleha TU. Tatalaksana Malaria Berat. Medical Profession Journal of Lampung [Internet]. 2023 Jan 26;13(1):83–90. Available from: https://journalofmedula.com/index.php/medula/article/view/584

Naing C, Ni H, Basavaraj AK, Aung HH, Tung WS, Whittaker MA. Cytokine levels in the severity of falciparum malaria: An umbrella review. Acta Trop [Internet]. 2024 Dec 1 [cited 2025 Jun 13];260:107447. Available from: https://www.sciencedirect.com/science/article/pii/S0001706X24003280?utm_source=chatgpt.com

Trivedi S, Chakravarty A. Neurological Complications of Malaria. Curr Neurol Neurosci Rep. 2022 Aug 14;22(8):499–513.

Pais TF, Ali H, da Silva JM, Duarte N, Neres R, Chhatbar C, et al. Brain endothelial STING1 activation by Plasmodium-sequestered heme promotes cerebral malaria via type I IFN response. Proc Natl Acad Sci U S A [Internet]. 2022 Sep;119(36). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85136903658&origin=inward

Pais TF, Penha-Gonçalves C. In vitro model of brain endothelial cell barrier reveals alterations induced by Plasmodium blood stage factors. Parasitol Res [Internet]. 2023 Mar 1 [cited 2025 Jun 12];122(3):729–37. Available from: https://link.springer.com/article/10.1007/s00436-023-07782-x

Howard C, Joof F, Hu R, Smith JD, Zheng Y. Probing cerebral malaria inflammation in 3D human brain microvessels. Cell Rep [Internet]. 2023 Oct;42(10):113253. Available from: https://api.elsevier.com/content/article/eid/1-s2.0-S2211124723012652

Galán-Salinas A, Corral-Ruíz G, Pérez-Vega MJ, Fabila-Castillo L, Silva-García R, Marquina-Castillo B, et al. Monocyte Locomotion Inhibitory Factor confers neuroprotection and prevents the development of murine cerebral malaria. Int Immunopharmacol [Internet]. 2021 Aug;97:107674. Available from: https://api.elsevier.com/content/article/eid/1-s2.0-S1567576921003106

Imai T, Ngo-Thanh H, Suzue K, Shimo A, Nakamura A, Horiuchi Y, et al. Live Vaccination with Blood-Stage Plasmodium yoelii 17XNL Prevents the Development of Experimental Cerebral Malaria. Vaccines (Basel) [Internet]. 2022 May;10(5):762. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130549915&origin=inward

Liu X, Wu Y, Zhao Y, Huang Y, Xu K, Wang J, et al. Identification of Plasmodium falciparum-specific protein PIESP2 as a novel virulence factor related to cerebral malaria. Int J Biol Macromol [Internet]. 2021 Apr;177:535–47. Available from: https://api.elsevier.com/content/article/eid/1-s2.0-S0141813021004360

Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, et al. Efficacy of artesunate combined with Atractylodes lancea or Prabchompoothaweep remedy extracts as adjunctive therapy for the treatment of cerebral malaria. BMC Complement Med Ther [Internet]. 2023 Sep;23(1):332. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85171809040&origin=inward

Sahu PK, Mohanty S. Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies. Pathogens [Internet]. 2023 Mar;12(4):522. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85154588330&origin=inward

Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, et al. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep [Internet]. 2022 Jun;23(6). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128165655&origin=inward

Mayhew JA, Witten AJ, Bond CA, Opoka RO, Bangirana P, Conroy AL, et al. Cytomegalovirus reactivation and acute and chronic complications in children with cerebral malaria: a prospective cohort study. Malar J [Internet]. 2025 Feb;24(1):48. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218492630&origin=inward

Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol [Internet]. 2023 Sep;255:111579. Available from: https://api.elsevier.com/content/article/eid/1-s2.0-S0166685123000373

Qin J, Lovelace MD, Mitchell AJ, de Koning-Ward T, Grau GER, Pai S. Perivascular macrophages create an intravascular niche for CD8+ T cell localisation prior to the onset of fatal experimental cerebral malaria. Clin Transl Immunology [Internet]. 2021 Jan;10(4). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105059521&origin=inward

Pranty AI, Szepanowski LP, Wruck W, Karikari AA, Adjaye J. Hemozoin induces malaria via activation of DNA damage, p38 MAPK and neurodegenerative pathways in a human iPSC-derived neuronal model of cerebral malaria. Sci Rep [Internet]. 2024 Oct 23;14(1):24959. Available from: https://www.nature.com/articles/s41598-024-76259-3

Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol [Internet]. 2022 Apr 20;13. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.863568/full

Freire-Antunes L, Ornellas-Garcia U, Rangel-Ferreira MV, Ribeiro-Almeida ML, de Sousa CHG, Carvalho LJ de M, et al. Increased Neutrophil Percentage and Neutrophil–T Cell Ratio Precedes Clinical Onset of Experimental Cerebral Malaria. Int J Mol Sci [Internet]. 2023 Jul;24(14):11332. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85166212320&origin=inward

Cimperman CK, Pena M, Gokcek SM, Theall BP, Patel M V, Sharma A, et al. Cerebral Malaria Is Regulated by Host-Mediated Changes in Plasmodium Gene Expression. David Sibley L, editor. mBio [Internet]. 2023 Apr;14(2). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85153900343&origin=inward

Liang R, Rao H, Pang Q, Xu R, Jiao Z, Lin L, et al. Human ApoE2 protects mice against Plasmodium berghei ANKA experimental cerebral malaria. Kumar N, editor. mBio [Internet]. 2023 Dec;14(6). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183143502&origin=inward

Li K, Wang H, Zhang HF, Zhao XX, Lai YJ, Liu FF. Genomic analysis of host gene responses to cerebral Plasmodium falciparum malaria. Immun Inflamm Dis [Internet]. 2021 Sep;9(3):819–26. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105071003&origin=inward

Eriska hidayati, Hunaifi I. Brain Injury and Neurocognitive Problem in Cerebral Malaria. Unram Medical Journal [Internet]. 2023 May 17;12(1):1377–87. Available from: http://jku.unram.ac.id/index.php/jk/article/view/714

Cha SJ, Yu X, Gregory BD, Lee YS, Ishino T, Opoka RO, et al. Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. David Sibley L, editor. mBio [Internet]. 2022 Feb;13(1). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125845959&origin=inward

Kioko M, Mwangi S, Pance A, Ochola-Oyier LI, Kariuki S, Newton C, et al. The mRNA content of plasma extracellular vesicles provides a window into molecular processes in the brain during cerebral malaria. Sci Adv [Internet]. 2024 Aug;10(33). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201508757&origin=inward

Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, et al. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. BMC Med [Internet]. 2024 Sep;22(1):388. Available from: https://api.elsevier.com/content/article/eid/1-s2.0-S1741701524000272

Kyei-Baafour E, Kusi KA, Arthur FKN, Sarkodie-Addo T, Theisen M, Dodoo D, et al. Association of Immunoglobulin G3 Hinge Region Length Polymorphism With Cerebral Malaria in Ghanaian Children. Journal of Infectious Diseases [Internet]. 2022 May;225(10):1786–90. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130765425&origin=inward

Vianou B, Royo J, Dechavanne S, Bertin GI, Yessoufou A, Houze S, et al. Monocytes, particularly nonclassical ones, lose their opsonic and nonopsonic phagocytosis capacity during pediatric cerebral malaria. Front Immunol [Internet]. 2024 May;15. Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85195022858&origin=inward

Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, et al. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci [Internet]. 2022 Dec 17;12(1):91. Available from: https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-022-00830-6

Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria. Virulence [Internet]. 2013 Aug 15;4(6):543–55. Available from: http://www.tandfonline.com/doi/abs/10.4161/viru.25949