

## BIOMAKERS OF TOLUENE AND THE IMPACT OF EXPOSURE TO TOLUENE IN INDOOR AIR ON PUBLIC HEALTH: LITERATURE REVIEW

**Budiyanti Mulyaningsih, Junaidi, Muhammad Pahruddin, Zulfikar Ali As**

Ministry Of Health Polytechnic Banjarmasin Environmental Health Department

Jl. H. Mistar Cokrookusumo No. 1A, Sungai Besar Subdistrict, Banjarbaru, South Kalimantan, Indonesia

Email: [budiyanti1106@gmail.com](mailto:budiyanti1106@gmail.com)

### Article Info

#### Article history:

Received June 18, 2025

Revised June 18, 2025

Accepted July 28, 2025

#### Keywords:

Cerebral Malaria

Immunopathology

Brain Damage

Neuroinflammatory Biomarkers

Blood-Brain Barrier

### ABSTRACT

**Immunopathological Mechanisms of Brain Damage in Cerebral Malaria: A Literature Review on Immunological Pathways and Neuroinflammatory Biomarkers.** Cerebral malaria, a complication of *Plasmodium falciparum* infection, affects the central nervous system and has the potential to cause brain damage. Reviewing its immunopathological mechanisms is crucial for developing more effective diagnostic and therapeutic strategies. This study aims to investigate the immunopathological mechanisms of brain damage in cerebral malaria by synthesizing recent literature through a narrative literature review approach. A total of 29 articles from the Scopus database were screened, with 23 meeting the inclusion and exclusion criteria. Thematic analysis identified five key sub-themes: (1) immune system activation and endothelial dysfunction; (2) the role of neutrophils and macrophages in neurological pathogenesis; (3) implicated molecular pathways and gene expression; (4) neuropathological findings in experimental models; and (5) clinical implications and therapeutic advancements. The findings indicate that immune overactivation, the release of pro-inflammatory cytokines, and dysregulated gene expression are core mechanisms underlying blood-brain barrier (BBB) disturbances and neural tissue damage. A profound understanding of these mechanisms is essential for designing more effective therapeutic interventions to mitigate the long-term neurological sequelae of cerebral malaria.

This is an open access article under the [CC BY-SA](#) license.



### INTRODUCTION

Malaria, a disease caused by *Plasmodium* parasites, remains one of the major infectious diseases posing a global public health problem, particularly in tropical and subtropical regions. In 2023, the World Health Organization (WHO) reported more than **240 million malaria cases worldwide**, with approximately **597,000 deaths annually**. The increase in these figures has been attributed to several factors, including resistance to antimalarial drugs and insecticides, climate change, and disruptions in health services during the pandemic <sup>(1)</sup>. Cerebral malaria is caused by *Plasmodium falciparum*. This condition affects the central nervous system and brain, leading to clinical manifestations such as high fever, impaired consciousness, seizures, and coma <sup>(2-3)</sup>. Cerebral malaria may also result in severe complications and long-term neurological sequelae, including cognitive and motor impairments, and can be fatal if not treated promptly <sup>(4-6)</sup>. One study demonstrated the occurrence of global hypoxia and cerebral edema, accompanied by increased cerebrospinal fluid protein levels and decreased brain activity velocity in adult patients <sup>(7)</sup>.

Although antimalarial treatment with artesunate and other antiparasitic drugs is effective in reducing parasite burden, it does not prevent brain injury<sup>(8)</sup>. One contributing factor is the excessive immunological response of the host to the infection<sup>(9)</sup>. Activation of immune responses in cerebral malaria triggers the release of proinflammatory cytokines, including TNF- $\alpha$ , IL-8, and IFN- $\beta$ . Excessive cytokine release can damage the blood-brain barrier (BBB), leading to cerebral edema and neurodegeneration<sup>(9)</sup>. In addition, parasitic heme within endothelial cells stimulates molecular pathways such as STING1 activation, increasing the production of type I interferons and the chemokine CXCL10, thereby promoting neuroinflammation and microvascular dysfunction<sup>(10)</sup>.

The adhesion of infected red blood cells (iRBCs) to the cerebral vascular endothelium contributes to reduced cerebral blood flow and expansion of hypoxic areas, further compromising the integrity of the blood-brain barrier<sup>(11)</sup>. Pathological experiments using animal models and three-dimensional human cell cultures have demonstrated immune cell infiltration, neuronal degeneration, and microcirculatory dysfunction in cerebral malaria infections<sup>(13)</sup>.

Previous studies have largely focused on isolated aspects, such as cytokines, specific immune cell populations, or molecular models. Comprehensive reviews integrating all immunopathological pathways remain limited. Therefore, this review aims to address this gap in the literature by providing an integrated overview of the immunopathological mechanisms underlying brain injury in patients with cerebral malaria. This review is expected to provide a strong scientific basis for the development of clinical and therapeutic strategies to minimize the neurological impact of cerebral malaria on the global population.

---

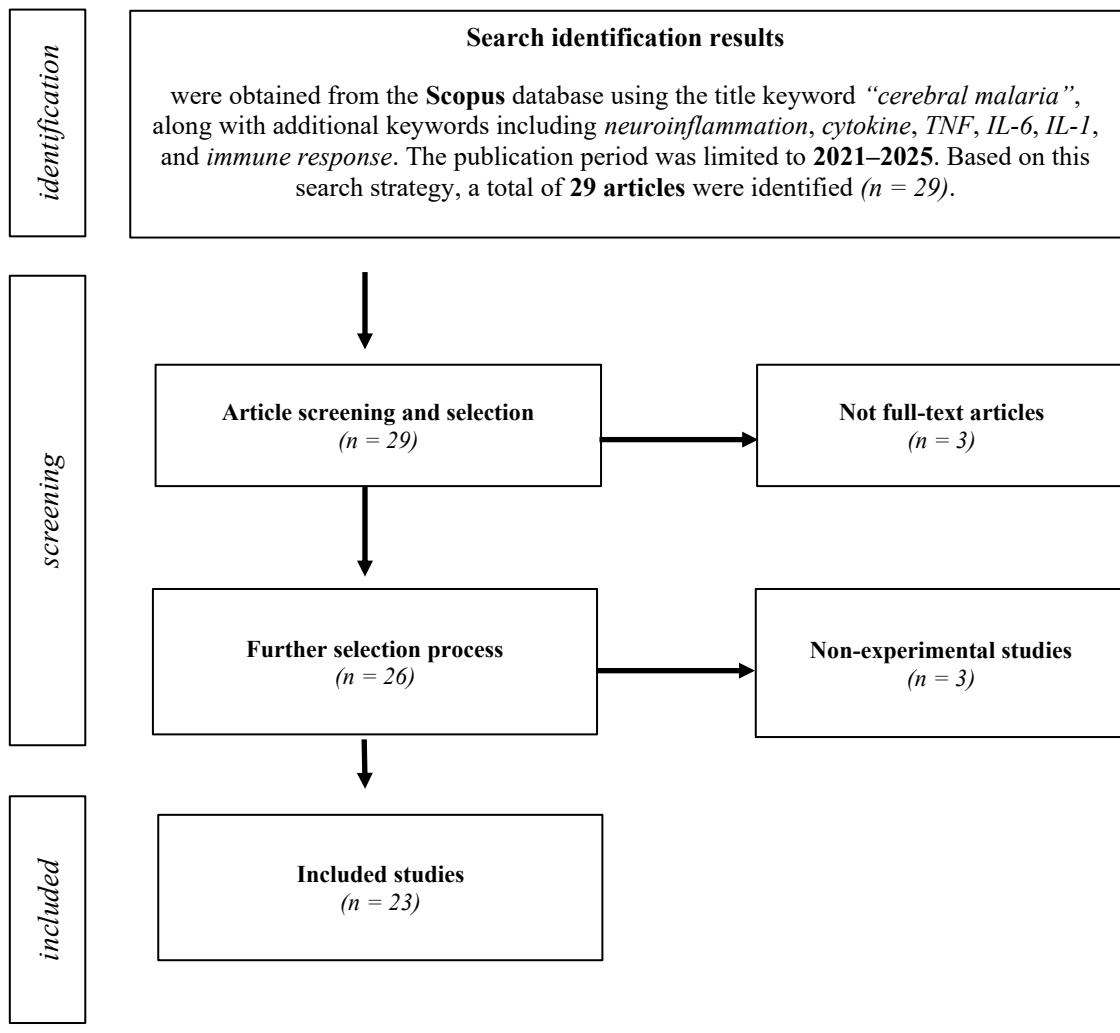
## MATERIALS AND RESEARCH METHODS

This literature review employed a narrative literature review approach aimed at synthesizing recent research findings on the pathophysiological mechanisms, molecular pathways, and the roles of immune cells in brain injury associated with cerebral malaria.

The preparation of this review was conducted in four stages.

In the first stage, the research questions and scope of the review were formulated based on the clinical manifestations of cerebral malaria related to brain health.

The second stage involved a systematic search for scientific articles using Publish or Perish (PoP) version 8.17 with the Scopus database. The primary keyword used in the article title search was "cerebral malaria", while additional keywords included neuroinflammation, cytokine, TNF, IL-6, IL-1, and immune response. The publication period was limited to 2021–2025, and the literature search was conducted in June 2025.


The third stage consisted of article selection based on the following inclusion criteria: articles published in English, issued between 2021 and 2025, available in full-text format, employing experimental or observational study designs, and focusing on biological, molecular, or neurological aspects of cerebral malaria. Of the 29 articles initially identified, 23 articles met the inclusion criteria, while 6 articles were excluded (3 articles were not available in full text, and 3 articles were epidemiological survey studies). The selection process was conducted by two independent reviewers to ensure reliability.

The fourth stage involved data extraction and analysis. Data extraction was performed using Microsoft Excel, reviewing key elements including article title, year of publication, research objectives, theoretical framework, methodology, participant or animal model characteristics, main findings, as well as study conclusions and recommendations.

Data analysis was conducted using a thematic analysis approach. The results yielded five main sub-themes: 1) activation of the immune system and cerebral endothelial dysfunction; 2) the roles of neutrophils and macrophages in neurological pathogenesis; 3) molecular pathways and gene expression involved in malaria-induced brain injury; neuropathological

finding; 4) s from experimental models; and 5) clinical implications and future directions for research and therapeutic development.

The analyzed articles comprised experimental animal studies, in vitro studies, and observational studies in humans. The article selection process is illustrated in the following flowchart.



## RESEARCH RESULTS AND DISCUSSION

### Immune System Activation and Cerebral Endothelial Dysfunction

*Plasmodium falciparum* infection triggers hyperactivation of the immune system, which plays a critical role in disrupting cerebral endothelial integrity through molecular pathways involving STING1 (Stimulator of Interferon Genes), IL-8, and interferons (IFNs), as well as through the infiltration of immune cells migrating across a weakened blood-brain barrier (BBB). This condition induces neuroinflammation that leads to cerebral edema, local hypoxia, and neuronal degeneration<sup>(6, 10)(11, 14–18)</sup>.

Uncontrolled immune activation, particularly via the STING1 molecular pathway, results in the release of type I interferons and other proinflammatory cytokines, causing endothelial cell polarity disruption and damage<sup>(10)</sup>. This process increases endothelial permeability and promotes the adhesion of infected erythrocytes (iRBCs) to the cerebral vascular surface<sup>(14, 17)</sup>. Erythrocyte adhesion is mediated by the upregulation of vascular adhesion molecules such as ICAM-1 and VCAM-1, which occur as a direct response to inflammatory signaling. These findings indicate that vascular inflammation and endothelial activation

represent critical points in the transition from uncomplicated malaria to cerebral malaria<sup>(17, 18)</sup>.

Perivascular macrophages surrounding cerebral blood vessels function as immune checkpoints. During malaria infection, these cells undergo intense activation and contribute to amplifying inflammatory responses<sup>(19, 20)</sup>. The release of cytokines such as TNF- $\alpha$  and IL-6 from these macrophages further compromises endothelial integrity and triggers the recruitment of neutrophils and lymphocytes to infected areas, thereby increasing immunological stress on the central nervous system<sup>(15, 19, 21)</sup>.

From the perspective of inflammatory biomarkers, elevated plasma levels of interleukin-8 (IL-8) in malaria-infected individuals correlate with the clinical severity of cerebral malaria. IL-8 is recognized as a potent chemokine that recruits neutrophils and contributes to the formation of a damaging inflammatory milieu. High IL-8 levels are associated with an increased risk of neurological impairment, indicating that systemic inflammatory components may serve as early indicators of brain injury<sup>(6)</sup>.

Hyperactive immune system activation plays a pivotal role in compromising the integrity of the blood-brain barrier in cerebral malaria. This mechanism facilitates the infiltration of immune cells and proinflammatory cytokines, exacerbating neuroinflammation and leading to cerebral edema, local hypoxia, and neuronal degeneration. Damage to cerebral endothelial structures, increased BBB permeability, and immune cell recruitment impose substantial immunological stress on the central nervous system. These findings suggest that cerebral malaria is not solely caused by the presence of malaria parasites, but also by complex and uncontrolled immune dysregulation that aggravates brain injury<sup>(22)</sup>.

The observed elevation of IL-8 levels highlights the potential of this biomarker as an early predictive tool for assessing the risk of brain damage associated with cerebral malaria.

### **Role of Immune Cells (Neutrophils and Macrophages) in Neurological Pathogenesis**

Macrophages and neutrophils are central players in the escalation of cerebral inflammation and are not merely secondary effects of systemic infection. Regulating the activity of these two cell types may be key to reducing long-term neurological morbidity in patients with cerebral malaria<sup>(20, 23)</sup>.

One of the most significant aspects of cerebral malaria pathogenesis is the destructive role of immune cells, particularly neutrophils and macrophages. When activated uncontrollably, these cells become primary agents of brain tissue damage. Their infiltration and hyperactivation in perivascular brain regions contribute to neuroinflammation, tissue injury, and impaired neural function<sup>(17, 20, 23)</sup>.

Perivascular macrophages normally help maintain immune homeostasis within the central nervous system. However, during cerebral malaria infection, they undergo excessive activation characterized by massive production of proinflammatory cytokines, including TNF- $\alpha$ , IL-1 $\beta$ , and IL-6. These cytokines increase BBB permeability and promote adhesion of infected erythrocytes to endothelial walls, thereby exacerbating microvascular obstruction and local hypoxia<sup>(15, 19, 21, 24)</sup>.

Furthermore, macrophage activity induces the recruitment of additional immune cells, particularly neutrophils, which exert destructive effects on brain tissue. Neutrophils migrating into the brain release neutrophil extracellular traps (NETs), consisting of chromatin fibers coated with proteolytic enzymes such as elastase and myeloperoxidase. Although NETs function to trap and kill pathogens, they also damage vascular endothelium and neuronal cell membranes, thereby intensifying local inflammation<sup>(6)</sup>.

The synergistic interaction between macrophages and neutrophils establishes a pathological cycle: macrophages release recruitment signals, neutrophils migrate and release NETs, which further damage endothelial cells and neurons, prompting macrophages to produce even more inflammatory cytokines. This inflammatory feedback loop is a major explanation for

the occurrence of cerebral edema, seizures, and coma in patients with cerebral malaria<sup>(6, 19, 20)</sup>.

Upregulation of cellular adhesion molecules such as ICAM-1 and VCAM-1 reinforces leukocyte adhesion to cerebral vascular walls. This process not only slows blood flow but also creates hypoxic zones that promote secondary inflammatory activation in the brain parenchyma. Such histopathological features have been consistently observed in murine models that mimic human cerebral malaria<sup>(14, 17)</sup>.

These findings underscore the importance of targeting not only the parasite in cerebral malaria therapy but also modulating immune responses, particularly macrophage and neutrophil activity<sup>(12, 19, 25, 26)</sup>. Immunoselective therapeutic approaches hold promise as adjunct strategies to reduce neurological damage in severe malaria<sup>(27)</sup>.

Macrophages and neutrophils play critical roles in brain damage during cerebral malaria. Their excessive activation leads to the release of various proinflammatory molecules and tissue-destructive enzymes, resulting in BBB leakage, capillary obstruction, and neural tissue injury. Macrophages serve as the primary source of cytokines that recruit neutrophils to the brain, where neutrophils release NETs that kill parasites but also damage endothelial and neural cells. Recurrent interactions between these cells create an inflammatory cycle that exacerbates cerebral edema, seizures, and coma<sup>(28)</sup>.

**Molecular Pathways and Gene Expression Involved in Malaria-Induced Brain Damage**  
*Plasmodium falciparum* infection in cerebral malaria causes not only structural damage due to microvascular obstruction and localized inflammatory responses, but also induces molecular dysregulation affecting gene expression in brain and immune cells. These molecular pathways play crucial roles in mediating inflammation, apoptosis, oxidative stress, and neurodegeneration, thereby aggravating neural tissue damage<sup>(6, 15, 24)</sup>.

Genes such as *CXCL10*, *ICAM-1*, and *TNF-α* are significantly upregulated in animal models and patients with cerebral malaria<sup>(10, 24)</sup>. Activation of STING1 in endothelial cells triggers type I interferon production and induces downregulation of tight junction proteins, resulting in BBB leakage. This STING1 activation represents part of the immune response to parasitic foreign DNA and serves as a key molecular signal driving inflammatory gene expression cascades<sup>(10)</sup>.

Malaria infection also induces alterations in proapoptotic gene expression that contribute to neuronal cell death. These changes are particularly evident in the hippocampus and cerebral cortex of murine cerebral malaria models—regions closely associated with memory and cognitive function. Dysregulation of gene expression worsens neurological outcomes and explains why many cerebral malaria survivors experience cognitive impairment even after recovery from acute infection<sup>(15, 18)</sup>. Reduced expression of neuroprotective genes has also been reported, further supporting the presence of infection-induced neurodegenerative processes<sup>(21)</sup>.

Understanding these molecular pathways opens opportunities for the development of targeted molecular therapies. In addition, specific gene expression profiles may serve as molecular biomarkers for predicting the risk of cerebral complications in malaria patients<sup>(6, 16, 27, 29, 30)</sup>.

Cerebral malaria in children exhibits more aggressive clinical and immunopathological patterns than in adults, with a higher risk of long-term neurological complications. A key finding is elevated plasma IL-8 levels in pediatric patients, which are associated with neutrophil recruitment and cerebral endothelial damage<sup>(6)</sup>. This intense inflammatory response is reinforced by the activation of specific molecular biomarkers related to cytokine and vascular adhesion pathways, as identified in immunological and serological studies<sup>(29, 31)</sup>. In addition to cytokines, genetic factors such as IgG3 hinge-region length have been implicated in individual susceptibility to cerebral complications through their roles in parasite neutralization and complement activation<sup>(32)</sup>.

In clinical immunology contexts, pediatric cerebral malaria is also influenced by viral coinfections, such as cytomegalovirus (CMV) reactivation, which exacerbates neurological outcomes by amplifying inflammatory pathways and disrupting immune regulation<sup>(18)</sup>. These findings emphasize the importance of a multidimensional approach to cerebral malaria analysis, considering not only parasitemia but also individual immune profiles and secondary infections. Accordingly, prevention and treatment strategies for pediatric cerebral malaria should extend beyond parasite elimination to include immune biomarker monitoring, selective anti-inflammatory therapy, and viral coinfection screening as part of integrated clinical management<sup>(33)</sup>.

*Plasmodium falciparum* infection in cerebral malaria causes cerebral vascular obstruction, genetic regulatory disturbances, and immune system dysregulation, leading to progressive neural damage. Multiple genes involved in inflammation, cellular injury, and neuroprotection are affected in regions critical for memory and cognitive function<sup>(34)</sup>. In children, cerebral malaria presents with greater severity than in adults, characterized by higher IL-8 levels and more pronounced endothelial damage<sup>(35)</sup>.

### **Neuropathological Findings from Experimental Models**

Experimental models play a pivotal role in elucidating the complex pathophysiology of cerebral malaria and supporting the development of mechanism-based therapies. Understanding cerebral malaria pathophysiology has been greatly advanced through the use of experimental models, particularly animal models such as mice and *in vitro* models based on human cerebral endothelial cell cultures. These models have been widely employed to characterize inflammatory processes, vasculopathy, and neural tissue damage during *Plasmodium falciparum* infection, as well as to evaluate therapeutic interventions. Experimental models hold strategic value in cerebral malaria research, both for elucidating pathological mechanisms and for guiding the development of more selective and effective molecular and immunological therapies.

Several studies included in this review utilized mice infected with *Plasmodium berghei* ANKA, a widely recognized standard animal model for cerebral malaria<sup>(10, 12, 13, 15, 19, 20, 23, 25, 26)</sup>. Histopathological examination revealed macrophage and T-cell infiltration around cerebral capillaries, accompanied by BBB disruption, cerebral edema, and microcirculatory impairment. Neuronal damage was evident in the hippocampus and cortex, including cellular degeneration, nuclear fragmentation, and microglial activation. These findings indicate that brain damage in cerebral malaria results from a combination of vascular obstruction and neuroinflammatory responses<sup>(20, 25)</sup>. Additional studies in BALB/c mice demonstrated that immunomodulatory treatments suppressing macrophage activity reduced tissue damage, further confirming the direct role of immune cells in cerebral pathology<sup>(23, 25)</sup>.

Beyond animal models, three-dimensional human brain endothelial culture models have provided valuable insights. Using microvasculature systems, human brain tissues inoculated with *P. falciparum* exhibited adhesion of infected erythrocytes to endothelial walls, accompanied by loss of tight junction protein expression<sup>(24)</sup>.

Overall, findings from these models consistently demonstrate neuropathological patterns including immune cell infiltration in perivascular regions, neuronal degeneration and microglial activation, increased BBB permeability, and impaired cerebral microcirculation due to adhesion of infected blood cells<sup>(19, 21, 24, 26, 30)</sup>.

### **Clinical Implications and Recommendations for Future Research**

Evidence from the reviewed literature confirms that cerebral malaria is not merely an acute manifestation of *Plasmodium falciparum* infection, but a complex neurological syndrome involving immune system activation, BBB disruption, gene expression dysregulation, and direct brain tissue damage. The clinical consequences are extensive, ranging from acute neurological symptoms such as seizures and coma to long-term cognitive impairment that

severely affects survivors' quality of life, particularly among children in endemic regions<sup>(6, 18, 31, 32)</sup>.

Clinically, cerebral malaria management remains focused on parasite elimination using antimalarial therapies such as artesunate. However, evidence from animal models and molecular studies indicates that parasite control alone is insufficient to prevent brain damage. Although parasitemia can be reduced with artesunate, inflammation persists and continues to damage tissue unless accompanied by therapies that suppress immune overactivation<sup>(15)</sup>.

IL-8 shows promise as a predictive biomarker for early detection of neurological complication risk<sup>(6)</sup>. Therapeutically, the development of selective immunomodulatory strategies—such as inhibition of the STING1 pathway or specific proinflammatory cytokines like TNF- $\alpha$ —may reduce endothelial and neuronal damage without compromising parasite clearance. This approach enables a more balanced strategy between pathogen control and neuroprotection<sup>(12, 25)</sup>.

Additionally, human 3D microvasculature models demonstrate significant potential for testing novel interventions in more physiologically relevant human microenvironments. These models represent ideal platforms for evaluating drug candidates or combination therapies and should be further developed for translational research<sup>(24)</sup>.

Future research should also prioritize long-term studies on post-infection cognitive outcomes in cerebral malaria survivors. Many children who survive the acute phase exhibit learning difficulties, memory impairment, and behavioral problems. Longitudinal studies are required to quantify these impacts and identify early neuroprotective or rehabilitative interventions<sup>(18)</sup>.

Integrating molecular immunology approaches with biomarker monitoring systems holds the potential to shift cerebral malaria management paradigms from reactive to preventive strategies.

---

## CONCLUSIONS AND RECOMMENDATIONS

Cerebral malaria is a severe neurological complication caused by *Plasmodium falciparum* infection, characterized by excessive immune activation and blood-brain barrier (BBB) disruption. Its pathogenic mechanisms involve proinflammatory cytokines, adhesion of infected erythrocytes, and regulation of inflammatory gene expression, leading to both structural and functional brain damage. Children exhibit higher susceptibility due to a more reactive immune profile and an increased risk of long-term effects on neural development. Longitudinal studies on cognitive function in pediatric survivors from endemic regions are essential for designing early rehabilitative interventions. Biomarker-based approaches and selective immunological interventions may enhance clinical responses to cerebral malaria while minimizing long-term neurological consequences.

---

## REFERENCES

1. World malaria report 2023 [Internet]. [cited 2025 Jun 16]. Available from: <https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023>
2. Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models (Adv. Sci. 36/2022). Advanced Science [Internet]. 2022 Dec 29;9(36). Available from: <https://onlinelibrary.wiley.com/doi/10.1002/advs.202270228>
3. Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol [Internet]. 2024 Jan 1 [cited 2025 Jun 13];40(1):28–44. Available from:

[https://www.sciencedirect.com/science/article/pii/S1471492223002854?utm\\_source=chatgpt.com](https://www.sciencedirect.com/science/article/pii/S1471492223002854?utm_source=chatgpt.com)

- 4. Parasher A, Chowdhary R, Bez J. Cerebral malaria: a lethal complication of a common tropical infection. *Int J Res Med Sci.* 2021 Jun 25;9(7):2167.
- 5. Leão L, Puty B, Dolabela MF, Povoa MM, Né YGDS, Eiró LG, et al. Association of cerebral malaria and TNF- $\alpha$  levels: a systematic review. *BMC Infect Dis.* 2020 Dec 23;20(1):442.
- 6. Royo J, Vianou B, Accrombessi M, Kinkpé E, Ayéadjou L, Dossou-Dagba I, et al. Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria. *Infect Dis Poverty* [Internet]. 2023 Feb;12(1):8. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147792514&origin=inward>
- 7. Bruneel F. Human cerebral malaria: 2019 mini review. *Rev Neurol (Paris)* [Internet]. 2019 Sep 1 [cited 2025 Jun 13];175(7-8):445-50. Available from: [https://www.sciencedirect.com/science/article/abs/pii/S0035378719306605?utm\\_source=chatgpt.com](https://www.sciencedirect.com/science/article/abs/pii/S0035378719306605?utm_source=chatgpt.com)
- 8. Sema G, Mutiara H, Soleha TU. Tatalaksana Malaria Berat. *Medical Profession Journal of Lampung* [Internet]. 2023 Jan 26;13(1):83-90. Available from: <https://journalofmedula.com/index.php/medula/article/view/584>
- 9. Naing C, Ni H, Basavaraj AK, Aung HH, Tung WS, Whittaker MA. Cytokine levels in the severity of falciparum malaria: An umbrella review. *Acta Trop* [Internet]. 2024 Dec 1 [cited 2025 Jun 13];260:107447. Available from: [https://www.sciencedirect.com/science/article/pii/S0001706X24003280?utm\\_source=chatgpt.com](https://www.sciencedirect.com/science/article/pii/S0001706X24003280?utm_source=chatgpt.com)
- 10. Trivedi S, Chakravarty A. Neurological Complications of Malaria. *Curr Neurol Neurosci Rep.* 2022 Aug 14;22(8):499-513.
- 11. Pais TF, Ali H, da Silva JM, Duarte N, Neres R, Chhatbar C, et al. Brain endothelial STING1 activation by Plasmodium-sequestered heme promotes cerebral malaria via type I IFN response. *Proc Natl Acad Sci U S A* [Internet]. 2022 Sep;119(36). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85136903658&origin=inward>
- 12. Pais TF, Penha-Gonçalves C. In vitro model of brain endothelial cell barrier reveals alterations induced by Plasmodium blood stage factors. *Parasitol Res* [Internet]. 2023 Mar 1 [cited 2025 Jun 12];122(3):729-37. Available from: <https://link.springer.com/article/10.1007/s00436-023-07782-x>
- 13. Howard C, Joof F, Hu R, Smith JD, Zheng Y. Probing cerebral malaria inflammation in 3D human brain microvessels. *Cell Rep* [Internet]. 2023 Oct;42(10):113253. Available from: <https://api.elsevier.com/content/article/eid/1-s2.0-S2211124723012652>
- 14. Galán-Salinas A, Corral-Ruiz G, Pérez-Vega MJ, Fabila-Castillo L, Silva-García R, Marquina-Castillo B, et al. Monocyte Locomotion Inhibitory Factor confers neuroprotection and prevents the development of murine cerebral malaria. *Int Immunopharmacol* [Internet]. 2021 Aug;97:107674. Available from: <https://api.elsevier.com/content/article/eid/1-s2.0-S1567576921003106>
- 15. Imai T, Ngo-Thanh H, Suzue K, Shimo A, Nakamura A, Horiuchi Y, et al. Live Vaccination with Blood-Stage Plasmodium yoelii 17XNL Prevents the Development of Experimental Cerebral Malaria. *Vaccines (Basel)* [Internet]. 2022 May;10(5):762. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130549915&origin=inward>
- 16. Liu X, Wu Y, Zhao Y, Huang Y, Xu K, Wang J, et al. Identification of Plasmodium falciparum-specific protein PIESP2 as a novel virulence factor related to cerebral malaria. *Int J Biol Macromol* [Internet]. 2021 Apr;177:535-47. Available from: <https://api.elsevier.com/content/article/eid/1-s2.0-S0141813021004360>

17. Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, et al. Efficacy of artesunate combined with *Atractylodes lancea* or *Prabchompoothawee* remedy extracts as adjunctive therapy for the treatment of cerebral malaria. *BMC Complement Med Ther* [Internet]. 2023 Sep;23(1):332. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85171809040&origin=inward>
18. Sahu PK, Mohanty S. Pathogenesis of Cerebral Malaria: New Trends and Insights for Developing Adjunctive Therapies. *Pathogens* [Internet]. 2023 Mar;12(4):522. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85154588330&origin=inward>
19. Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, et al. Neutrophils impose strong immune pressure against *PfEMP1* variants implicated in cerebral malaria. *EMBO Rep* [Internet]. 2022 Jun;23(6). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128165655&origin=inward>
20. Mayhew JA, Witten AJ, Bond CA, Opoka RO, Bangirana P, Conroy AL, et al. Cytomegalovirus reactivation and acute and chronic complications in children with cerebral malaria: a prospective cohort study. *Malar J* [Internet]. 2025 Feb;24(1):48. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218492630&origin=inward>
21. Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. *Mol Biochem Parasitol* [Internet]. 2023 Sep;255:111579. Available from: <https://api.elsevier.com/content/article/eid/1-s2.0-S0166685123000373>
22. Qin J, Lovelace MD, Mitchell AJ, de Koning-Ward T, Grau GER, Pai S. Perivascular macrophages create an intravascular niche for CD8+ T cell localisation prior to the onset of fatal experimental cerebral malaria. *Clin Transl Immunology* [Internet]. 2021 Jan;10(4). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105059521&origin=inward>
23. Pranty AI, Szepanowski LP, Wruck W, Karikari AA, Adjaye J. Hemozoin induces malaria via activation of DNA damage, p38 MAPK and neurodegenerative pathways in a human iPSC-derived neuronal model of cerebral malaria. *Sci Rep* [Internet]. 2024 Oct 23;14(1):24959. Available from: <https://www.nature.com/articles/s41598-024-76259-3>
24. Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. *Front Immunol* [Internet]. 2022 Apr 20;13. Available from: <https://www.frontiersin.org/articles/10.3389/fimmu.2022.863568/full>
25. Freire-Antunes L, Ornellas-Garcia U, Rangel-Ferreira MV, Ribeiro-Almeida ML, de Sousa CHG, Carvalho LJ de M, et al. Increased Neutrophil Percentage and Neutrophil-T Cell Ratio Precedes Clinical Onset of Experimental Cerebral Malaria. *Int J Mol Sci* [Internet]. 2023 Jul;24(14):11332. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85166212320&origin=inward>
26. Cimperman CK, Pena M, Gokcek SM, Theall BP, Patel M V, Sharma A, et al. Cerebral Malaria Is Regulated by Host-Mediated Changes in *Plasmodium* Gene Expression. David Sibley L, editor. *mBio* [Internet]. 2023 Apr;14(2). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85153900343&origin=inward>

27. Liang R, Rao H, Pang Q, Xu R, Jiao Z, Lin L, et al. Human ApoE2 protects mice against Plasmodium berghei ANKA experimental cerebral malaria. Kumar N, editor. *mBio* [Internet]. 2023 Dec;14(6). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183143502&origin=inward>
28. Li K, Wang H, Zhang HF, Zhao XX, Lai YJ, Liu FF. Genomic analysis of host gene responses to cerebral Plasmodium falciparum malaria. *Immun Inflamm Dis* [Internet]. 2021 Sep;9(3):819–26. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105071003&origin=inward>
29. Eriska hidayati, Hunaifi I. Brain Injury and Neurocognitive Problem in Cerebral Malaria. *Unram Medical Journal* [Internet]. 2023 May 17;12(1):1377–87. Available from: <http://jku.unram.ac.id/index.php/jk/article/view/714>
30. Cha SJ, Yu X, Gregory BD, Lee YS, Ishino T, Opoka RO, et al. Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. David Sibley L, editor. *mBio* [Internet]. 2022 Feb;13(1). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125845959&origin=inward>
31. Kioko M, Mwangi S, Pance A, Ochola-Oyier LI, Kariuki S, Newton C, et al. The mRNA content of plasma extracellular vesicles provides a window into molecular processes in the brain during cerebral malaria. *Sci Adv* [Internet]. 2024 Aug;10(33). Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201508757&origin=inward>
32. Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, et al. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. *BMC Med* [Internet]. 2024 Sep;22(1):388. Available from: <https://api.elsevier.com/content/article/eid/1-s2.0-S1741701524000272>
33. Kyei-Baafour E, Kusi KA, Arthur FKN, Sarkodie-Addo T, Theisen M, Dodoo D, et al. Association of Immunoglobulin G3 Hinge Region Length Polymorphism With Cerebral Malaria in Ghanaian Children. *Journal of Infectious Diseases* [Internet]. 2022 May;225(10):1786–90. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130765425&origin=inward>
34. Vianou B, Royo J, Dechavanne S, Bertin GI, Yessoufou A, Houze S, et al. Monocytes, particularly nonclassical ones, lose their opsonic and nonopsonic phagocytosis capacity during pediatric cerebral malaria. *Front Immunol* [Internet]. 2024 May;15. Available from: <https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85195022858&origin=inward>
35. Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, et al. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. *Cell Biosci* [Internet]. 2022 Dec 17;12(1):91. Available from: <https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-022-00830-6>
36. Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria. *Virulence* [Internet]. 2013 Aug 15;4(6):543–55. Available from: <http://www.tandfonline.com/doi/abs/10.4161/viru.25949>